23 research outputs found

    Optimisation des Processus Décisionnels de Markov Partiellement Observables avec prise en compte explicite du gain d’information

    Get PDF
    Traditionnellement, les travaux de recherche en décision séquentielle dans l'incertain avec observabilité partielle reposent sur les Processus Décisionnels de Markov Partiellement Observables (POMDP), optimisés avec un critère de maximisation de revenus cumulés pondérés sur un horizon d'action donné. Or, ce critère est pessimiste dans la mesure où la décision est optimisée sur une distribution de probabilité sur l'état de croyance de l'agent autonome, sans que l'algorithme ne réduise explicitement cette incertitude. Autrement dit, les critères classiques d'optimisation des POMDP raisonnent sur toutes les hypothèses possibles, sans favoriser explicitement les actions qui pourraient acquérir de l'information et réduire le champ d’hypothèses. Au contraire, les travaux en traitement d'image et particulièrement en perception active s'intéressent plutôt à trouver les actions qui minimisent l'entropie de croyance, c'est-à-dire l'incertitude sur l'état caché, mais sans optimiser une récompense globale liée à la mission du robot. Ainsi, afin de résoudre au mieux des problèmes robotiques alliant à la fois des objectifs de perception et de mission, nous proposons deux nouveaux critères mixtes, l'un additif et l’autre multiplicatif, qui agrègent les récompenses cumulées (mission) et les entropies de croyance cumulées (perception), toutes deux pondérées sur un horizon d'action commun. À l'aide d’évaluations statistiques sur plusieurs exécutions de la politique optimisée, nous montrons que nos critères mixtes sont optimaux par rapport à un critère purement entropique, et que le critère additif améliore même un critère basé purement sur les récompenses de la mission. Ce dernier point démontre que le critère classique, qui repose uniquement sur les récompenses cumulées, n'est pas optimal lors de l’exécution, car il ne prend pas en compte explicitement le gain d'information et la réduction de l’incertitude sur l'état caché du système

    Modeling action feasibility in POMDPs with boolean-valued preconditions

    Get PDF
    In automated planning, action preconditions are boolean-valued formulas, which check whether a given action is feasible in a given state. While crucial for realistic applications where dangerous actions in some states must be discarded, preconditions have never been formally considered in POMDPs. One reason is that preconditions are defined over states whereas decisions depend on the current belief of the agent. Simply defining preconditions over beliefs is not sufficient because, as each belief is possibly defined over many states, there is no guarantee to prevent the agent from applying an infeasible damaging action. Augmenting the observation space with feasible actions does not help more, since the optimization process still maximizes the value of the current belief over all existing actions in the model. Thus, we propose an extension of the traditional POMDP model that, by means of an additional information step semantically different from standard observations, allows the agent to know the set of feasible actions before deciding the best action to apply. Without requiring a full knowledge of the current state, this extended model leads to a significant modification of the decision process, for which we provide a proved optimization scheme. We also compare the value and the execution paths of policies optimized either with the standard model or with our extended one, and show that our policies are always safe and gather more rewards at execution

    Modélisation de la faisabilité d'action dans le POMDP avec des préconditions booléennes

    Get PDF
    En planification classique, une précondition sur une action est une formule booléenne, qui vérifie si une action est réalisable pour un état donné. Cet élément crucial pour des applications réalistes, où par exemple des actions considérées dangereuses doivent être éliminées, n'a pas été formellement modélisé pour les POMDPs à notre connaissance. Une raison est que les préconditions sont définies sur des états, i.e. le domaine d'application de l'action, alors que les décisions prises dans un POMDP sont définies sur l'état de croyance courant de l'agent. Définir simplement des préconditions sur des états de croyance n'est pas suffisant, puisque chaque état de croyance peut-être défini sur plusieurs états, et il n'y a pas de garantie d'éviter que l'agent applique une action infaisable. Augmenter l'espace d'observations avec des actions réalisables n'est pas non plus satisfaisant, d'abord parce que l'information sur les actions applicables est obtenue, par définition, après la décision et, de plus, le processus d'optimisation continuera de maximiser la valeur de l'état de croyance courant sur toutes les actions du modèle. Ainsi, nous proposons une extension du modèle traditionnel des POMDP qui, via une étape additionnelle d'information sémantiquement différente de l'observation standard,permet à l'agent de connaître avec certitude l'ensemble d'actions réalisables avant de décider de la meilleure action à appliquer. Cette étape additionnelle d'information, qui ne nécessite pas de connaître complètement l'état courant de l'agent, requiert une modification significative du modèle de décision, pour lequel nous fournissons un nouveau schéma d'optimisation. Nous comparons la valeur des trajectoires des politiques optimisées pour le modèle traditionnel et pour le modèle proposé, et nous montrons que nos politiques s'avèrent toujours sûres, i.e. sans danger, et expriment donc une valeur plus importante pour des problèmes avec observabilité partielle qui présentent naturellement des préconditions booléennes

    POMDP solving: what rewards do you really expect at execution?

    Get PDF
    Partially Observable Markov Decision Processes have gained an increasing interest in many research communities, due to sensible improvements of their optimization algorithms and of computers capabilities. Yet, most research focus on optimizing either average accumulated rewards (AI planning) or direct entropy (active perception), whereas none of them matches the rewards actually gathered at execution. Indeed, the first optimization criterion linearly averages over all belief states, so that it does not gain best information from different observations, while the second one totally discards rewards. Thus, motivated by simple demonstrative examples, we study an additive combination of these two criteria to get the best of reward gathering and information acquisition at execution. We then compare our criterion with classical ones, and highlight the need to consider new hybrid non-linear criteria, on a realistic multi-target recognition and tracking mission

    Optimisation de POMDP : quelles récompenses sont réellement attendues à l'exécution de la politique ?

    Get PDF
    Les Processus Décisionnels Markoviens Partiellement Observables sont actuellement un sujet d'intérêt dans la communauté scientifique grâce aux progrès observés dans des algorithmes de résolution et dans les capacités numériques de calcul. La plupart de ces algorithmes sont focalisés sur la résolution d'un critère de performance, qui a pour ambition de caractériser les politiques qui permettront de générer les séquences de récompenses le plus importantes possibles. Dans la planification en Intelligence Artificielle, l'attention est tournée vers un critère qui optimise une somme pondérée des récompenses, et, pour des applications en perception active d'autre part, le critère est souvent défini en termes de gain d'information (entropie de Shannon). Aucun de ces critères ne prend en compte les récompenses réellement acquises lors de l'exécution de la politique. En effet, le premier critère est une moyenne linéaire sur l'espace d'états de croyance, de sorte que l'agent ne tend pas à obtenir une meilleure information des différentes observations, alors que le second critère ne prend pas en compte les récompenses. Ainsi, motivés par des exemples démonstratifs, nous étudions deux combinaisons, additive et multiplicative, de ces critères afin d'obtenir une meilleur séquence de récompenses et de gain d'information lors de l'exécution de la politique. Nous comparons nos critères avec le critère classique optimisé (y-pondéré) dans le cadre POMDP et nous soulignons l'intérêt de considérer un nouveau critère hybride non-linéaire pour des applications réalistes de reconnaissance et pistage multi-cibles

    Open Loop Execution of Tree-Search Algorithms

    Get PDF
    In the context of tree-search stochastic planning algorithms where a generative model is available, we consider on-line planning algorithms building trees in order to recommend an action. We investigate the question of avoiding re-planning in subsequent decision steps by directly using sub-trees as action recommender. Firstly, we propose a method for open loop control via a new algorithm taking the decision of re-planning or not at each time step based on an analysis of the statistics of the sub-tree. Secondly, we show that the probability of selecting a suboptimal action at any depth of the tree can be upper bounded and converges towards zero. Moreover, this upper bound decays in a logarithmic way between subsequent depths. This leads to a distinction between node-wise optimality and state-wise optimality. Finally, we empirically demonstrate that our method achieves a compromise between loss of performance and computational gain

    Robot introspection through learned hidden Markov models

    Get PDF
    In this paper we describe a machine learning approach for acquiring a model of a robot behaviour from raw sensor data. We are interested in automating the acquisition of behavioural models to provide a robot with an introspective capability. We assume that the behaviour of a robot in achieving a task can be modelled as a finite stochastic state transition system. Beginning with data recorded by a robot in the execution of a task, we use unsupervised learning techniques to estimate a hidden Markov model (HMM) that can be used both for predicting and explaining the behaviour of the robot in subsequent executions of the task. We demonstrate that it is feasible to automate the entire process of learning a high quality HMM from the data recorded by the robot during execution of its task.The learned HMM can be used both for monitoring and controlling the behaviour of the robot. The ultimate purpose of our work is to learn models for the full set of tasks associated with a given problem domain, and to integrate these models with a generative task planner. We want to show that these models can be used successfully in controlling the execution of a plan. However, this paper does not develop the planning and control aspects of our work, focussing instead on the learning methodology and the evaluation of a learned model. The essential property of the models we seek to construct is that the most probable trajectory through a model, given the observations made by the robot, accurately diagnoses, or explains, the behaviour that the robot actually performed when making these observations. In the work reported here we consider a navigation task. We explain the learning process, the experimental setup and the structure of the resulting learned behavioural models. We then evaluate the extent to which explanations proposed by the learned models accord with a human observer's interpretation of the behaviour exhibited by the robot in its execution of the task

    Rackham: An Interactive Robot-Guide

    Get PDF
    International audienceRackham is an interactive robot-guide that has been used in several places and exhibitions. This paper presents its design and reports on results that have been obtained after its deployment in a permanent exhibition. The project is conducted so as to incrementally enhance the robot functional and decisional capabilities based on the observation of the interaction between the public and the robot. Besides robustness and efficiency in the robot navigation abilities in a dynamic environment, our focus was to develop and test a methodology to integrate human-robot interaction abilities in a systematic way. We first present the robot and some of its key design issues. Then, we discuss a number of lessons that we have drawn from its use in interaction with the public and how that will serve to refine our design choices and to enhance robot efficiency and acceptability

    Apprentissage de modèles de comportement pour le contrôle d'exécution et la planification robotique

    No full text
    Autonomous robotic systems evolve in unpredictable environments, and have to deal with sensor uncertainties. They are usually built with robustness in mind and not to give a model of their behaviour. These models are necessary for high-level decision making like planning or execution control. In nowadays applications, their are often very simplified with respect to a real application. We propose to talk about automated building of intermediate stochastic models for real-world robotics. First, we are going to explain how to learn hidden Markov models from raw sensor data to hidden internal states. Then we are going to talk about larger models and explain why exact inference in such models is not tractable. We will show an algorithm for learning such models. We then show how to use these models to optimize a robotic behaviour and for the system to decide to learn.Les systèmes robotiques autonomes évoluent dans des environnements fortement imprévisibles, et sont sujets à des très grandes imprécisions des capteurs et de leur connaissance en général. De fait, ils sont construits dans l'objectif de robustesse et non pas de fournir des modèles de leur comportement, qui sont nécessaires à la prise de décision de plus haut niveau, type planification ou contrôle d'exécution. Dans les applications actuelles, ils sont souvent très abstraits et simplifiés par rapport à une application réelle. Nous proposons d'explorer la construction automatique de modèles intermédiaires stochastiques pour des systèmes robotiques réels. Dans un premier temps, nous expliquons la construction de modèles de Markov cachés, des données brutes à la définition d'états inobservables, et leur apprentissage. Nous passons ensuite à des modèles d'expressivité plus grande, et expliquons pourquoi les méthodes de calcul exact sont impossibles à appliquer. Nous montrons alors un algorithme original d'apprentissage quantitatif de tels modèles, et passons en revue différentes méthodes d'apprentissage de la causalité sous-jacente. Nous montrons une utilisation de tels modèles pour optimiser un comportement robotique, et pour que le système puisse décider d'apprendre
    corecore